6.08 Spring 2022 Final Project

LINK TO DEMO: https://youtu.be/kL.8vj1RAu_Y

Documentation

Modifications

The system contains two main components: the ESP client which deals with taking the pictures
and creating basic edits; and the server which handles displaying images and more complex edits of the
images. The server requires no changes to setup, however, certain modifications must be made to be used
properly. Each ESP client is associated with a unique username that can be modified. Any images
captured from the camera are bound to the given name and are scoped to the given username in the server.

Basic Process

The ESP client has two main modes of operation: operations related to the camera, and operations
related to the modification of images captured. If the user selects the “Take A Picture” option, then the
ESP waits for the shutter button to be pressed, simulating an actual camera. Upon pressing the button, the
ESP requests the most recent image buffer from the camera and converts the raw bytes into a base64
encoded representation of the image. This string is then sent over to the server through an HTTP request,
before resetting to the original state.

If, instead, the user selects “Edit Recent Picture,” then the ESP provides a black canvas on which
the user can draw points and shapes. These changes are tracked and added to the image on demand. The
changes are of two types: vocal commands and joystick movements.

Vocal commands are forwarded on to Google’s speech recognition API to be processed. From
here, the text is converted into information about the attributes of a change: its shape, height, width, and
color. This is then used to construct a new change and is then displayed.

On the other hand, each pixel that is drawn using the joystick creates a new change whose shape
is a point. At the end of the editing process, the cumulative changes are sent to the server and are then
used to create a new version of the image.

To view all of the images posted to the server by a certain user contained in merged image.db,
you can make a get request with a url like this: https://60 -2 net/sandbox/sc/team78/project/mer
request_handler.py?ID=user

The user is the ID of the user whose images you want to view. There is also an optional parameter you
can add called name where you can specify the exact name of the image you’d like to view. This way, you
only see that specific image posted by the specified user. The image display page shows you every
version of each unique image by constantly cycling through each version of the image in a loop. From this
main page you can click on any of the images to edit the original version. Clicking on an image reroutes

https://youtu.be/kL8vj1RAu_Y
https://608dev-2.net/sandbox/sc/team78/project/merged_request_handler.py?ID=user
https://608dev-2.net/sandbox/sc/team78/project/merged_request_handler.py?ID=user

you to a new display with the editing interface, where you can edit the image using sliding bars with
different editing tools. From that page, there’s a button to send the current edited version of the image to
the database with a post request. After sending the post request, you are automatically rerouted to the
original display page , with the updated version reflected in the loop for that image.

When an edited image from the server is posted, the server side code queries the database to find
the highest version of the image you are trying to repost that currently exists in merged image.db. It then
increments that version by one and assigns that number as the version of the newly posted image. This
way, the most recent edited photo will have the highest version number of all forms of the original. Then,
when you are taken back to the display page, the newest version will appear in the cycle of image history.
When a new “original image” is sent from the ESP or a manual POST request, it is sent without a name
parameter. The server then queries the database to find the highest number name in the current database
and increments it by one. It then posts the new original image with this incremented name—so the latest
original image has the highest integer name.

When an image is posted there is also an optional filter parameter you can pass in. The filter
parameter can take the values of bw, emboss, contour, edges, min and max. Each of these parameters
applies a different filter to the image before it’s posted to the database. Most of the filter names are self
explanatory but min expands the minimum pixels in an image and max expands the maximum pixels in an
image, making the darker or lighter parts of the image appear thicker.

State diagram

State 0: IDLE STATE - Display the menu selection and wait for the user to select. If “Take A Picture” is
selected, go to state 1. If “Edit Recent Picture” is selected, go to state 4. If the user decides to open a
browser, transition to state 15.

State 1: SHUTTER INPUT STATE - Wait for the shutter button (button 39) to be pressed, if it is pressed,
go to state 2. Else, stay in state 1.

State 2: CAMERA STATE - Take a picture using the ArduCam and wait for the internal image buffer to
be filled. When the “done” flag is set to true, go to state 3.

State 3: UPLOAD STATE - Encode the buffer into base64 and send the base64 image and username to the
server merged_request_handler.py through a POST request. Transition to state 11.

State 4: ESP EDIT STATE - Wait for either the audio button (button 39) to be pressed or the joystick to
move. If button 39 is pressed, go to state 5. If button 26 is pressed, go to state 9. If button 45 is pressed,
then go to state 16.

State 5: RECORDING STATE - If button 39 is pressed and it has been less than five seconds since the
beginning of the recording, continue to listen to audio and stay in this state. Otherwise, go to state 6.

State 6: PARSE AUDIO STATE - Send audio to Google’s speech recognition API and wait for response.
Once the response has been received, go to state 7.

State 7: AUDIO CHANGE STATE - Parse the transcript as a change and add the change to the current list
of changes. Set display change flag to true. Go to state 8.

State 8: DISPLAY STATE - If the display change flag is true, display the last change. Set the display flag
to false. Go to state 4.

State 9: JOYSTICK STATE - If the joystick was moved, figure out direction and change current pixel
location, and go to state 10.

State 10: PIXEL STATE - If button 26 was pushed, then change the current pixel color to be white. Set
the display change flag to true and go to state 8. Else, go to state 4.

State 16: EDIT SUBMIT STATE - Send a PUT request to the server with the changes from the edit state.
Go to state 0.

State 11: POST STATE - User can submit their image to the database merged db.py through a POST
request to the server merged request handler.py given at least 1) a username as a parameter and 2) the
image’s base64 string as the body.
- Ifpost request is sent from state 3: after receiving server’s response, the machine automatically
transitions back to state 0
- If post request is sent from the server (from state 14):
- The server has a built-in time delay of 1 second so stay at state 11
- Then server refreshes so transition back to state 12/13

State 12: GALLERY STATE - Passing the username as a parameter, the user can view all the images from
the ArduinoCam that they posted to the database through a GET request to the server
merged request handler.py

- Transitions to state 14 when the user clicks one of the images on the gallery.

State 13: IMAGE HISTORY STATE - User can view all versions of a specific image given the image
name and user as parameters in their GET request to the server merged request handler.py
- Transitions to state 14 when the user clicks the displayed image.

State 14: EDITING STATE: Enables the user to manually edit the image they clicked at either state 12 or
13. Note the user is still on the merged request handler.py but the HTML view has changed to
accommodate the editing interface.

- After editing, the user can choose to clear the image so the state remains at state 14

- The user can reload the page so to go back to state 12/13 (the one transitioned from)

- The user can submit the edited image as a new version edit so transitions to state 1

Saturation: -100 O 100 Saturation: -100 O100
Brightness: -100 O 100 Brightness: -100 ®, 100
Exposure: -100 O 100 Exposure: -100 O 100
Vibrance: -100 O 100 Vibrance: -100 O100
Sharpness: 0 O 100 Sharpness: 0 O 100
Noise: 0 O 100 Noise: 0 “O 100
Hue: 0 O 100 Hue: 0 O 100
Blur: 0 O 100 Blur: 0 ‘O 100

Side-by-side comparison of the type of image edits that may be made at state 14

State 15: GET STATE - Instead of interacting with Arduino, user sends a GET request to the server
merged_request_handler.py

While waiting for response, stay at state 15
If name is not given as parameter transition to state 12
If name is given as parameter transition to state 13

Design Challenges

The original time lapse feature was meant to be an interactive feature where on the ESP32, certain
original images are marked as part of a time lapse and replayed accordingly on the server after
post submission. However, this was an idea proposed for week 4, so we took heed of our time
constraint and decided on a simpler time lapse feature, where an image looped through all its
corresponding version edits.

Arducam and LCD display (solution was to change the frequency in the source code of TFT User
Setup library)

Displaying base64 encoded strings from the IMU and the server. The issue was with how we were
trying to display the image in HTML, not the bas64 string itself. The source attribute of the
images was not being set correctly.

For better cohesion, we integrated the entire server side, including two different GET requests,
and PUT/POST requests into one script merged request_handler.py.

The initial idea was to use an IMU to draw with a cursor and separately use voice commands to
draw shapes. However, we opted to ease the user experience by replacing the IMU with a joystick
and draw shapes based on the position of the cursor. This not only made drawing shapes less like
reading a very old car manual, but also greatly simplified the voice commands.

Parts List

Item QTY [Description |Cost/UNIT |Supplier |Part Number [Link
https://www.amazon.com/A
rducam-Module-Megapixel

Arducam s-Arduino-Mega2560/dp/B

Mini 012UXNDOY /ref=sr 1 4?

Module dchild=1&keywords=arduc

Camera Camera am&qid=1617653366&sr=

Shield 1 Shield $25.99 Amazon |UCT _B0067 |8-4
https://www.amazon.com/0
1-Performance-Transducer-
Interfaces-Two-Dimension/
dp/BO9GY2NCTC/ref=sr_1
_2?keywords=joystick+mo

Joystick Joystick dule&qid=1652044998&s=

Module 1 Component |$8.59 Amazon |B103348 videogames&sr=1-2

A majority of the parts used have been given in the base kit. However, this project requires a new
component called the Arducam Mini Module Camera Shield to take photos. Additionally, a 2-axis

joystick will allow users to draw over and edit images freely.

Code Layout

Serverside

team 8@ 6.0% dev-2.net

L PV‘OJC(‘A’
t mevged- image.-dlb
mevged - request=handler. py

PUT request - merged request _handler.py
The PUT request of merged request handler.py accesses the latest image version of the image
that the client wants to edit. This is determined through the two query parameters, the id of the user and
the name of the image to edit. Using these two, a database query is generated to find the highest version
of the image with the given name under the user with the given id. From here, the changes that are sent in
the body of the request. The body is a JSON object that describes the list of changes, where each change

object describes a specific change, such as the width, height, x, y, and color of an ellipse or rectangle.
These changes are then applied to the image using the Pillow library and is then re-inserted into the
database as a new version. The Pillow library deals with image processing and modification, which
perfectly suited our needs for this part of the project.

GET request - merged request handler.py

For these HTML displays rendered by merged request handler.py, two major JavaScript modules
via CDN script sources are utilized to achieve our intended functionality. JQuery is a very ubiquitous
standard module for upgraded JS functions, while CamanJS is a flexible image editing library that fulfills
all the editing attributes we wanted to support on our server.

The GET request of merged request handler.py contains two separate page displays: the first
page is the image gallery, which may be of just one image if name is specified in the parameter. This first
page displays images with an HTML tag blocked by a <button> tag. The button and img tags both
contain metadata in its attributes to carry information about each image’s name, version, and base64
representation. These buttons are all in a class called “image button,” and the images each have a class
that corresponds to their name. The grouping of these classes is so that similar objects can share mutual
functions and are easy to extract in JavaScript. Animations are achieved through the function animate()
that is called by the window every 500 milliseconds.

On the editing interface, we use range <input> tags with unique HTML IDs to extract user input
and after every drag, the JavaScript function applyFilters() is called and updates the image based on the
user input’s edit inputs. The function clear image() is called when pressing the “Clear” button and reverts
the image back to before any server-side edits have been made. The function submit_image() is called
when pressing the “Submit” button and sends a POST request to the same server before reloading the site
back to its original gallery display.

POST request - merged request_handler.py

If the POST request doesn’t specify a name, it is assumed the image is an original sent from the
ESP. The request handler gets the highest integer name currently in the database and assigned that number
incremented by one to assign to the new image with a version of one. Otherwise, if a name is passed in
with the image, it is assumed to be an edited version of another image. The request handler queries the
database to identify the highest version of the image and assigns the most recent edited version this
integer incremented by one. If the post request specified a filter parameter, it applies the specified filter to
the image and then posts the image with the given edits, user, name and version.

Database - merged image.db

The database, merged image.db, located in the project folder of our team’s server has four
attributes: id, img, name, and version. The id is text identifying the user that sent this image to the
database and img contains the base64 encoding of the image as text. Name and version are integers that
identify if an image is an original picture, or an edited version of a previously existing photo in the
database. When an image is posted from the ESP, it is not sent with a name parameter. If an image is sent
without a name parameter, this indicates that it is an original image and the merged request handler.py
queries the database to find the highest current name in the database. It then increments that number by
one and assigns that integer as the name of the new image along with a version of one to indicate that it is

the first version of this image. These four fields are then inserted into merged image.db. If an image is
reposted from the image editing HTML page, it is sent with the same name parameter as the original,
unedited image. The server side code in merged request handler.py then queries the database to find the
highest current version of that image. It then increments that number by one to get the version that
corresponds to this new image. With the same name as the original image and the incremented version
value this new edited photo is inserted into the database.

ESP-side

- e R SR R - |

LomMmevro—clieny

et > %, g A
L

CATSY

i ~Sumiier, W/ Swone e 0ep

| I helpers . ino
[

|- Stcine

button.h / button.cpp:

This file contains the declaration and implementation of the Button class from the classy
button exercise from week 4. No modifications were required to this class. This class is used to help
detect button presses, specifically knowing when to take a picture and send the changes. This class was
not used in determining when to draw pixels onto the screen because of the way that the class relays
changes about the state of the button press.

change.h / change.cpp:
This file contains the definition and implementation of the changes that are done on the
ESP side. The structure contains the shape drawn, x, y, height, width, and the color, although the meaning
of these values changes based on the shape drawn. These files also contain helper functions for dealing
with conversions to and from other types, such as string.

editor.h / editor.cpp:

This file contains the Editor class which abstracts the implementation details behind the
editing functionality. Specifically, it manages the different changes that will be submitted to the server and
also deals with parsing changes from audio transcripts. This class also defines the maximum number of
changes that can occur, which has been hard-coded to be 400.

scroller.h /scroller.cpp:
This file contains a modified version of the WikipediaUI exercise. Specifically, it deals
with selecting either to take a picture or to edit the most recent picture. The class also makes selections

accessible through a function that returns the selected index. Additionally, it allows for an arbitrary
number of options to be made.

helpers.ino:
This file contains various helper functions that deal with miscellaneous tasks, such as
sending HTTP/HTTPS requests, setting up the ArduCam and the IMU, and connecting to WIFI. This file
is similar to the support_functions.ino file that is provided in the labs.

src.ino:
This file contains the main source code for the ESP client. It orchestrates the multiple
classes together by initializing the required buttons, scroller, editor, presenting a user selection menu in
the loop, and delegating selections to the responsible class.

